Characterization of redox-active cysteine residues of persulfide-responsive transcriptional repressor SqrR

نویسندگان

  • Takayuki Shimizu
  • Shinji Masuda
چکیده

ARTICLE HISTORY Received 21 April 2017 Accepted 9 May 2017 ABSTRACT We recently identified the novel persulfide sensor SqrR that functions as a master regulator of sulfide-dependent gene expression in the purple photosynthetic bacterium Rhodobacter capsulatus. SqrR binds to the promoter regions of target genes to repress their expression in the absence of sulfide, and the repressor activity is negated by sulfide treatment. SqrR has 3 cysteine residues, 2 of which are conserved in SqrR homologs from other bacteria: Cys41 and Cys107. SqrR forms an intramolecular tetrasulfide bond between Cys41 and Cys107 when exposed to persulfide, which results in loss of the DNA-binding activity in vitro. Here, we address the mechanism through which these cysteine residues are modified by persulfides. We show that the predicted pKa value of Cys107, as revealed by a putative SqrR structural model, is lower than that of Cys41. Furthermore, C41S SqrR in which Cys41 was changed to serine forms an intermolecular disulfide-bond between Cys107 of 2 SqrRs, suggesting high nucleophilic reactivity of Cy107. These data suggest that Cys107 and Cys41 function as attacking Cys and resolving Cys, respectively; this occurs during tetrasulfidebond formation of WT SqrR, when it is exposed to persulfide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redox Signaling Regulated by Cysteine Persulfide and Protein Polysulfidation.

For decades, reactive persulfide species including cysteine persulfide (CysSSH) have been known to exist endogenously in organisms. However, the physiological significance of endogenous persulfides remains poorly understood. That cystathionine β-synthase and cystathionine γ-lyase produced CysSSH from cystine was recently demonstrated. An endogenous sulfur transfer system involving CysSSH eviden...

متن کامل

Identification of persulfide-binding and disulfide-forming cysteine residues in the NifS-like domain of the molybdenum cofactor sulfurase ABA3 by cysteine-scanning mutagenesis.

The Moco (molybdenum cofactor) sulfurase ABA3 from Arabidopsis thaliana catalyses the sulfuration of the Moco of aldehyde oxidase and xanthine oxidoreductase, which represents the final activation step of these enzymes. ABA3 consists of an N-terminal NifS-like domain that exhibits L-cysteine desulfurase activity and a C-terminal domain that binds sulfurated Moco. The strictly conserved Cys430 i...

متن کامل

Evidence for a proton transfer network and a required persulfide-bond-forming cysteine residue in Ni-containing carbon monoxide dehydrogenases.

Carbon monoxide dehydrogenase from Moorella thermoacetica catalyzes the reversible oxidation of CO to CO(2) at a nickel-iron-sulfur active site called the C-cluster. Mutants of a proposed proton transfer pathway and of a cysteine residue recently found to form a persulfide bond with the C-cluster were characterized. Four semiconserved histidine residues were individually mutated to alanine. His...

متن کامل

Evidence for redox regulation of the transcription factor NtcA, acting both as an activator and a repressor, in the cyanobacterium Anabaena PCC 7120.

NtcA has been identified as a nitrogen-responsive regulatory protein required for nitrogen assimilation and heterocyst differentiation in cyanobacteria. It is proposed that NtcA functions through the formation of DNA-protein complexes with its specific target sequence within the promoter regions of the regulated genes. In vitro, NtcA of Anabaena PCC 7120 binds to upstream regions of the genes w...

متن کامل

Persulfide formation on mitochondrial cysteine desulfurase: enzyme activation by a eukaryote-specific interacting protein and Fe-S cluster synthesis.

Cysteine desulfurases abstract sulfur from the substrate cysteine, generate a covalent persulfide on the active site cysteine of the enzyme, and then donate the persulfide sulfur to various recipients such as Fe-S clusters. In Saccharomyces cerevisiae, the Nfs1p protein is the only known cysteine desulfurase, and it forms a complex with Isd11p (Nfs1p·Isd11p). Both of these proteins are found pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017